Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 29, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360798

RESUMEN

Neurovascular unit mural cells called 'pericytes' maintain the blood-brain barrier and local cerebral blood flow. Pathological changes in the hippocampus predispose to cognitive impairment and dementia. The role of hippocampal pericytes in dementia is largely unknown. We investigated hippocampal pericytes in 90 post-mortem brains from post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD), and AD-VaD (Mixed) subjects, and post-stroke non-demented survivors as well as similar age controls. We used collagen IV immunohistochemistry to determine pericyte densities and a mouse model of VaD to validate the effects of chronic cerebral hypoperfusion. Despite increased trends in hippocampal microvascular densities across all dementias, mean pericyte densities were reduced by ~25-40% in PSD, VaD and AD subjects compared to those in controls, which calculated to 14.1 ± 0.7 per mm capillary length, specifically in the cornu ammonis (CA) 1 region (P = 0.01). In mice with chronic bilateral carotid artery occlusion, hippocampal pericyte loss was ~60% relative to controls (P < 0.001). Pericyte densities were correlated with CA1 volumes (r = 0.54, P = 0.006) but not in any other sub-region. However, mice subjected to the full-time environmental enrichment (EE) paradigm showed remarkable attenuation of hippocampal CA1 pericyte loss in tandem with CA1 atrophy. Our results suggest loss of hippocampal microvascular pericytes across common dementias is explained by a vascular aetiology, whilst the EE paradigm offers significant protection.


Asunto(s)
Enfermedad de Alzheimer , Isquemia Encefálica , Demencia Vascular , Accidente Cerebrovascular , Humanos , Ratones , Animales , Enfermedad de Alzheimer/patología , Demencia Vascular/patología , Pericitos/patología , Hipocampo/patología , Encéfalo/patología , Accidente Cerebrovascular/patología , Isquemia Encefálica/patología
2.
Glia ; 72(2): 375-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37909242

RESUMEN

White matter abnormalities, related to poor cerebral perfusion, are a core feature of small vessel cerebrovascular disease, and critical determinants of vascular cognitive impairment and dementia. Despite this importance there is a lack of treatment options. Proliferation of microglia producing an expanded, reactive population and associated neuroinflammatory alterations have been implicated in the onset and progression of cerebrovascular white matter disease, in patients and in animal models, suggesting that targeting microglial proliferation may exert protection. Colony-stimulating factor-1 receptor (CSF1R) is a key regulator of microglial proliferation. We found that the expression of CSF1R/Csf1r and other markers indicative of increased microglial abundance are significantly elevated in damaged white matter in human cerebrovascular disease and in a clinically relevant mouse model of chronic cerebral hypoperfusion and vascular cognitive impairment. Using the mouse model, we investigated long-term pharmacological CSF1R inhibition, via GW2580, and demonstrated that the expansion of microglial numbers in chronic hypoperfused white matter is prevented. Transcriptomic analysis of hypoperfused white matter tissue showed enrichment of microglial and inflammatory gene sets, including phagocytic genes that were the predominant expression modules modified by CSF1R inhibition. Further, CSF1R inhibition attenuated hypoperfusion-induced white matter pathology and rescued spatial learning impairments and to a lesser extent cognitive flexibility. Overall, this work suggests that inhibition of CSF1R and microglial proliferation mediates protection against chronic cerebrovascular white matter pathology and cognitive deficits. Our study nominates CSF1R as a target for the treatment of vascular cognitive disorders with broader implications for treatment of other chronic white matter diseases.


Asunto(s)
Trastornos Cerebrovasculares , Trastornos del Conocimiento , Disfunción Cognitiva , Leucoencefalopatías , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Sustancia Blanca , Animales , Ratones , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/patología , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Ratones Endogámicos C57BL , Microglía/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Sustancia Blanca/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
3.
Stem Cell Reports ; 18(12): 2386-2399, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37977146

RESUMEN

Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.


Asunto(s)
Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular , Humanos , Células Endoteliales , Encéfalo/patología , Accidente Cerebrovascular/patología , Matriz Extracelular , Metaloproteinasas de la Matriz/genética , Colágeno Tipo IV/genética
4.
Nature ; 613(7942): 120-129, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517604

RESUMEN

Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFß1-TGFßR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.


Asunto(s)
Sistema Nervioso Central , Microglía , Vaina de Mielina , Adulto , Animales , Humanos , Ratones , Axones/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Microglía/citología , Microglía/metabolismo , Microglía/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Cognición , Factor de Crecimiento Transformador beta1/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Metabolismo de los Lípidos , Envejecimiento/metabolismo , Envejecimiento/patología
5.
Brain Pathol ; 32(6): e13101, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748290

RESUMEN

With the hypothesis that perivascular microglia are involved as neuroinflammatory components of the gliovascular unit contributing to white matter hyperintensities on MRI and pathophysiology, we assessed their status in stroke survivors who develop dementia. Immunohistochemical and immunofluorescent methods were used to assess the distribution and quantification of total and perivascular microglial cell densities in 68 brains focusing on the frontal lobe WM and overlying neocortex in post-stroke dementia (PSD), post-stroke non-dementia (PSND) and similar age control subjects. We primarily used CD68 as a marker of phagocytic microglia, as well as other markers of microglia including Iba-1 and TMEM119, and the myeloid cell marker TREM2 to assess dementia-specific changes. We first noted greater total densities of CD68+ and TREM2+ cells per mm2 in the frontal WM compared to the overlying cortex across the stroke cases and controls (p = 0.001). PSD subjects showed increased percentage of activated perivascular CD68+ cells distinct from ramified or primed microglia in the WM (p < 0.05). However, there was no apparent change in perivascular TREM2+ cells. Total densities of TREM2+ cells were only ~10% of CD68+ cells but there was high degree of overlap (>70%) between them in both the WM and the cortex. CD68 and Iba-1 or CD68 and TMEM119 markers were colocalised by ~55%. Within the deep WM, ~30% of CD68+ cells were co-localised with fragments of degraded myelin basic protein. Among fragmented CD68+ cells in adjacent WM of PSD subjects, >80% of the cells expressed cleaved caspase-3. Our observations suggest although the overall repertoire of perivascular microglial cells is not changed in the parenchyma, PSD subjects accrue more perivascular-activated CD68+ microglia rather than TREM2+ cells. This implies there is a subset of CD68+ cells, which are responsible for the differential response in perivascular inflammation within the gliovascular unit of the deep WM.


Asunto(s)
Demencia Vascular , Accidente Cerebrovascular , Sustancia Blanca , Humanos , Demencia Vascular/metabolismo , Microglía/metabolismo , Encéfalo , Accidente Cerebrovascular/metabolismo
6.
J Cereb Blood Flow Metab ; 42(7): 1176-1191, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35102790

RESUMEN

Chronic microvascular inflammation and oxidative stress are inter-related mechanisms underpinning white matter disease and vascular cognitive impairment (VCI). A proposed mediator is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2), a major source of reactive oxygen species (ROS) in the brain. To assess the role of Nox2 in VCI, we studied a tractable model with white matter pathology and cognitive impairment induced by bilateral carotid artery stenosis (BCAS). Mice with genetic deletion of Nox2 (Nox2 KO) were compared to wild-type (WT) following BCAS. Sustained BCAS over 12 weeks in WT mice induced Nox2 expression, indices of microvascular inflammation and oxidative damage, along with white matter pathology culminating in a marked cognitive impairment, which were all protected by Nox2 genetic deletion. Neurovascular coupling was impaired in WT mice post-BCAS and restored in Nox2 KO mice. Increased vascular expression of chemoattractant mediators, cell-adhesion molecules and endothelial activation factors in WT mice post-BCAS were ameliorated by Nox2 deficiency. The clinical relevance was confirmed by increased vascular Nox2 and indices of microvascular inflammation in human post-mortem subjects with cerebral vascular disease. Our results support Nox2 activity as a critical determinant of VCI, whose targeting may be of therapeutic benefit in cerebral vascular disease.


Asunto(s)
Estenosis Carotídea , Disfunción Cognitiva , NADPH Oxidasa 2 , Sustancia Blanca , Animales , Disfunción Cognitiva/patología , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasa 2/genética , NADPH Oxidasa 2/metabolismo , Sustancia Blanca/patología
7.
J Cereb Blood Flow Metab ; 41(9): 2423-2438, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33730931

RESUMEN

The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease.


Asunto(s)
Trastornos Cerebrovasculares/fisiopatología , Matriz Extracelular/fisiología , Proteómica/métodos , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
8.
Front Aging Neurosci ; 13: 788519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095472

RESUMEN

Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-ß (Aß) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aß removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aß. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.

9.
J Neuroinflammation ; 17(1): 367, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33261626

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion causes damage to the brain's white matter underpinning vascular cognitive impairment. Inflammation and oxidative stress have been proposed as key pathophysiological mechanisms of which the transcription factor Nrf2 is a master regulator. We hypothesised that white matter pathology, microgliosis, blood-brain barrier breakdown and behavioural deficits induced by chronic hypoperfusion would be exacerbated in mice deficient in the transcription factor Nrf2. METHODS: Mice deficient in Nrf2 (male heterozygote or homozygous for Nrf2 knockout) or wild-type littermates on a C57Bl6/J background underwent bilateral carotid artery stenosis (BCAS) to induce chronic cerebral hypoperfusion or sham surgery and survived for a further 6 weeks. White matter pathology was assessed with MAG immunohistochemistry as a marker of altered axon-glial integrity; alterations to astrocytes and microglia/macrophages were assessed with GFAP and Iba1 immunohistochemistry, and blood-brain barrier breakdown was assessed with IgG immunohistochemistry. Behavioural alterations were assessed using 8-arm radial arm maze, and alterations to Nrf2-related and inflammatory-related genes were assessed with qRT-PCR. RESULTS: Chronic cerebral hypoperfusion induced white matter pathology, elevated microglial/macrophage levels and blood-brain barrier breakdown in white matter tracts that were increased in Nrf2+/- mice and further exacerbated by the complete absence of Nrf2. Chronic hypoperfusion induced white matter astrogliosis and induced an impairment in behaviour assessed with radial arm maze; however, these measures were not affected by Nrf2 deficiency. Although Nrf2-related antioxidant gene expression was not altered by chronic cerebral hypoperfusion, there was evidence for elevated pro-inflammatory related gene expression following chronic hypoperfusion that was not affected by Nrf2 deficiency. CONCLUSIONS: The results demonstrate that the absence of Nrf2 exacerbates white matter pathology and microgliosis following cerebral hypoperfusion but does not affect behavioural impairment.


Asunto(s)
Encéfalo/patología , Disfunción Cognitiva/metabolismo , Microglía/patología , Factor 2 Relacionado con NF-E2/deficiencia , Sustancia Blanca/patología , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Estenosis Carotídea/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Brain Res Bull ; 163: 72-83, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32707262

RESUMEN

Hippocampal atrophy and pathology are common in ageing-related disorders and associated with cognitive impairment and dementia. We explored whether environmental enrichment (EE) ameliorated the pathological sequelae in the hippocampus subsequent to chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Seventy-four male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 -h exposure to EE per day (3 h) or full-time exposure to EE (full) for 3 months. Four months after surgery, the hippocampus was examined for the extent of vascular brain injury and neuronal and glial changes. Results showed that long-term BCAS induced strokes, most often in CA1 subfield, reduced 40-50 % CA1 neurons (P < 0.01) and increased microglia/macrophage in CA1-CA3 subfields (P < 0.02). Remarkably, both 3 h and full-time EE regimes attenuated hippocampal neuronal death and repressed recurrent strokes with complete prevention of larger infarcts in mice on full-time EE (P < 0.01). Full-time EE also reduced astrocytic clasmatodendrosis and microglial/macrophage activation in all CA subfields. Our results suggest that exposure to EE differentially reduces long-term hypoperfusive hippocampal damage. The implementation of even limited EE may be beneficial for patients diagnosed with vascular cognitive impairment.


Asunto(s)
Estenosis Carotídea/patología , Infarto Cerebral/patología , Ambiente , Hipocampo/patología , Neuroglía/patología , Neuronas/patología , Animales , Estenosis Carotídea/psicología , Recuento de Células/métodos , Infarto Cerebral/psicología , Infarto Cerebral/terapia , Vivienda para Animales , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo
11.
J Cereb Blood Flow Metab ; 40(7): 1402-1414, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32151228

RESUMEN

Assessment of outcome in preclinical studies of vascular cognitive impairment (VCI) is heterogenous. Through an ARUK Scottish Network supported questionnaire and workshop (mostly UK-based researchers), we aimed to determine underlying variability and what could be implemented to overcome identified challenges. Twelve UK VCI research centres were identified and invited to complete a questionnaire and attend a one-day workshop. Questionnaire responses demonstrated agreement that outcome assessments in VCI preclinical research vary by group and even those common across groups, may be performed differently. From the workshop, six themes were discussed: issues with preclinical models, reasons for choosing functional assessments, issues in interpretation of functional assessments, describing and reporting functional outcome assessments, sharing resources and expertise, and standardization of outcomes. Eight consensus points emerged demonstrating broadly that the chosen assessment should reflect the deficit being measured, and therefore that one assessment does not suit all models; guidance/standardisation on recording VCI outcome reporting is needed and that uniformity would be aided by a platform to share expertise, material, protocols and procedures thus reducing heterogeneity and so increasing potential for collaboration, comparison and replication. As a result of the workshop, UK wide consensus statements were agreed and future priorities for preclinical research identified.


Asunto(s)
Demencia Vascular , Modelos Animales de Enfermedad , Proyectos de Investigación/normas , Animales , Consenso , Recuperación de la Función , Encuestas y Cuestionarios , Reino Unido
12.
Brain Pathol ; 30(1): 191-202, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31357238

RESUMEN

We performed a clinicopathological study to assess the burden of small vessel disease (SVD) type of pathological changes in elderly demented subjects, who had clinical evidence of autonomic dysfunction, either carotid sinus hypersensitivity or orthostatic hypotension or both or had exhibited unexpected repeated falls. Clinical and neuropathological diagnoses in 112 demented subjects comprised dementia with Lewy bodies (DLB), Parkinson's disease with dementia (PDD), Alzheimer's disease (AD), Mixed dementia (mostly AD-DLB) and vascular dementia (VaD). Of these, 12 DLB subjects had no recorded unexpected falls in life and therefore no evidence of concomitant autonomic dysfunction. A further 17 subjects were assessed as aging controls without significant pathology or signs of autonomic dysfunction. We quantified brain vascular pathological changes and determined severities of neurodegenerative lesions including α-synuclein pathology. We found moderate-severe vascular changes and high-vascular pathology scores (P < 0.01) in all neurodegenerative dementias and as expected in VaD compared to similar age controls. Arteriolosclerosis, perivascular spacing and microinfarcts were frequent in the basal ganglia and frontal white matter (WM) across all dementias, whereas small infarcts (<5 mm) were restricted to VaD. In a sub-set of demented subjects, we found that vascular pathology scores were correlated with WM hyperintensity volumes determined by MRI in life (P < 0.02). Sclerotic index values were increased by ~50% in both the WM and neocortex in all dementias compared to similar age controls. We found no evidence for increased α-synuclein deposition in subjects with autonomic dysfunction. Our findings suggest greater SVD pathological changes occur in the elderly diagnosed with neurodegenerative dementias including DLB and who develop autonomic dysfunction. SVD changes may not necessarily manifest in clinically overt symptoms but they likely confound motor or cognitive dysfunction. We propose dysautonomia promotes chronic cerebral hypoperfusion to impact upon aging-related neurodegenerative disorders and characterize their end-stage clinical syndromes.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo/patología , Demencia Vascular/fisiopatología , Microvasos/patología , Envejecimiento/patología , Enfermedad de Alzheimer/patología , Demencia/fisiopatología , Enfermedad por Cuerpos de Lewy/patología , Imagen por Resonancia Magnética/métodos , Neocórtex/patología , Enfermedad de Parkinson/patología , Disautonomías Primarias/patología , Sustancia Blanca/patología , alfa-Sinucleína
13.
Hum Mol Genet ; 28(4): 628-638, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30351356

RESUMEN

Mutations in the collagen genes COL4A1 and COL4A2 cause Mendelian eye, kidney and cerebrovascular disease including intracerebral haemorrhage (ICH), and common collagen IV variants are a risk factor for sporadic ICH. COL4A1 and COL4A2 mutations cause endoplasmic reticulum (ER) stress and basement membrane (BM) defects, and recent data suggest an association of ER stress with ICH due to a COL4A2 mutation. However, the potential of ER stress as a therapeutic target for the multi-systemic COL4A1 pathologies remains unclear. We performed a preventative oral treatment of Col4a1 mutant mice with the chemical chaperone phenyl butyric acid (PBA), which reduced adult ICH. Importantly, treatment of adult mice with the established disease also reduced ICH. However, PBA treatment did not alter eye and kidney defects, establishing tissue-specific outcomes of targeting Col4a1-derived ER stress, and therefore this treatment may not be applicable for patients with eye and renal disease. While PBA treatment reduced ER stress and increased collagen IV incorporation into BMs, the persistence of defects in BM structure and reduced ability of the BM to withstand mechanical stress indicate that PBA may be counter-indicative for pathologies caused by matrix defects. These data establish that treatment for COL4A1 disease requires a multipronged treatment approach that restores both ER homeostasis and matrix defects. Alleviating ER stress is a valid therapeutic target for preventing and treating established adult ICH, but collagen IV patients will require stratification based on their clinical presentation and mechanism of their mutations.


Asunto(s)
Hemorragia Cerebral/tratamiento farmacológico , Colágeno Tipo IV/genética , Terapia Molecular Dirigida , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/patología , Hemorragia Cerebral/genética , Hemorragia Cerebral/patología , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Ratones , Mutación , Fenilbutiratos/administración & dosificación
14.
Sci Rep ; 8(1): 12552, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135571

RESUMEN

Mouse models have shown that cerebral hypoperfusion causes white matter disruption and memory impairment relevant to the study of vascular cognitive impairment and dementia. The associated mechanisms include inflammation and oxidative stress are proposed to drive disruption of myelinated axons within hypoperfused white matter. The aim of this study was to determine if increased endogenous anti-oxidant and anti-inflammatory signalling in astrocytes was protective in a model of mild cerebral hypoperfusion. Transgenically altered mice overexpressing the transcription factor Nrf2 (GFAP-Nrf2) and wild type littermates were subjected to bilateral carotid artery stenosis or sham surgery. Behavioural alterations were assessed using the radial arm maze and tissue was collected for pathology and transcriptome analysis six weeks post-surgery. GFAP-Nrf2 mice showed less pronounced behavioural impairments compared to wild types following hypoperfusion, paralleled by reduced optic tract white matter disruption and astrogliosis. There was no effect of hypoperfusion on anti-oxidant gene alterations albeit the levels were increased in GFAP-Nrf2 mice. Instead, pro-inflammatory gene expression was determined to be significantly upregulated in the optic tract of hypoperfused wild type mice but differentially affected in GFAP-Nrf2 mice. In particular, complement components (C4 and C1q) were increased in wild type hypoperfused mice but expressed at levels similar to controls in hypoperfused GFAP-Nrf2 mice. This study provides evidence that overexpression of Nrf2 in astrocytes exerts beneficial effects through repression of inflammation and supports the potential use of Nrf2-activators in the amelioration of cerebrovascular-related inflammation and white matter degeneration.


Asunto(s)
Astrocitos/metabolismo , Trastornos Cerebrovasculares/fisiopatología , Factor 2 Relacionado con NF-E2/genética , Tracto Óptico/patología , Sistema de Transporte de Aminoácidos y+/genética , Animales , Conducta Animal , Estenosis Carotídea/patología , Circulación Cerebrovascular , Trastornos Cerebrovasculares/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Expresión Génica , Glutamato-Cisteína Ligasa/genética , Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Sustancia Blanca/patología
15.
Clin Sci (Lond) ; 132(8): 851-868, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712883

RESUMEN

Cerebral small vessel disease (SVD) is a major contributor to stroke, cognitive impairment and dementia with limited therapeutic interventions. There is a critical need to provide mechanistic insight and improve translation between pre-clinical research and the clinic. A 2-day workshop was held which brought together experts from several disciplines in cerebrovascular disease, dementia and cardiovascular biology, to highlight current advances in these fields, explore synergies and scope for development. These proceedings provide a summary of key talks at the workshop with a particular focus on animal models of cerebral vascular disease and dementia, mechanisms and approaches to improve translation. The outcomes of discussion groups on related themes to identify the gaps in knowledge and requirements to advance knowledge are summarized.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/etiología , Investigación Biomédica Traslacional , Animales , Humanos
16.
Glia ; 66(1): 34-46, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28722234

RESUMEN

Chronic cerebral hypoperfusion is a key mechanism associated with white matter disruption in cerebral vascular disease and dementia. In a mouse model relevant to studying cerebral vascular disease, we have previously shown that cerebral hypoperfusion disrupts axon-glial integrity and the distribution of key paranodal and internodal proteins in subcortical myelinated axons. This disruption of myelinated axons is accompanied by increased microglia and cognitive decline. The aim of the present study was to investigate whether hypoperfusion impairs the functional integrity of white matter, its relation with axon-glial integrity and microglial number, and whether by targeting microglia these effects can be improved. We show that in response to increasing durations of hypoperfusion, the conduction velocity of myelinated fibres in the corpus callosum is progressively reduced and that paranodal and internodal axon-glial integrity is disrupted. The number of microglial cells increases in response to hypoperfusion and correlates with disrupted paranodal and internodal integrity and reduced conduction velocities. Further minocycline, a proposed anti-inflammatory and microglia inhibitor, restores white matter function related to a reduction in the number of microglia. The study suggests that microglial activation contributes to the structural and functional alterations of myelinated axons induced by cerebral hypoperfusion and that dampening microglia numbers/proliferation should be further investigated as potential therapeutic benefit in cerebral vascular disease.


Asunto(s)
Antiinflamatorios/uso terapéutico , Estenosis Carotídea , Gliosis/tratamiento farmacológico , Gliosis/etiología , Microglía/efectos de los fármacos , Minociclina/uso terapéutico , Sustancia Blanca/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Arginasa/genética , Arginasa/metabolismo , Axones/patología , Estenosis Carotídea/complicaciones , Estenosis Carotídea/tratamiento farmacológico , Estenosis Carotídea/patología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Glicoproteína Asociada a Mielina/metabolismo , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/fisiología , Sustancia Blanca/patología , Sustancia Blanca/fisiología
17.
J Cereb Blood Flow Metab ; 38(8): 1354-1370, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28606007

RESUMEN

The brain's white matter is highly vulnerable to reductions in cerebral blood flow via mechanisms that may involve elevated microgliosis and pro-inflammatory pathways. In the present study, the effects of severe cerebral hypoperfusion were investigated on white matter function and inflammation. Male C57Bl/6J mice underwent bilateral common carotid artery stenosis and white matter function was assessed at seven days with electrophysiology in response to evoked compound action potentials (CAPs) in the corpus callosum. The peak latency of CAPs and axonal refractoriness was increased following hypoperfusion, indicating a marked functional impairment in white matter, which was paralleled by axonal and myelin pathology and increased density and numbers of microglia/macrophages. The functional impairment in peak latency was significantly correlated with increased microglia/macrophages. Dimethyl fumarate (DMF; 100 mg/kg), a drug with anti-inflammatory properties, was found to reduce peak latency but not axonal refractoriness. DMF had no effect on hypoperfusion-induced axonal and myelin pathology. The density of microglia/macrophages was significantly increased in vehicle-treated hypoperfused mice, whereas DMF-treated hypoperfused mice had similar levels to that of sham-treated mice. The study suggests that increased microglia/macrophages following cerebral hypoperfusion contributes to the functional impairment in white matter that may be amenable to modulation by DMF.


Asunto(s)
Trastornos Cerebrovasculares/tratamiento farmacológico , Dimetilfumarato/uso terapéutico , Inmunosupresores/uso terapéutico , Inflamación/tratamiento farmacológico , Microglía/efectos de los fármacos , Sustancia Blanca/irrigación sanguínea , Animales , Circulación Cerebrovascular/efectos de los fármacos , Trastornos Cerebrovasculares/inmunología , Trastornos Cerebrovasculares/patología , Inflamación/inmunología , Inflamación/patología , Mediadores de Inflamación/inmunología , Masculino , Ratones Endogámicos C57BL , Microglía/inmunología , Microglía/patología , Sustancia Blanca/inmunología , Sustancia Blanca/patología
18.
J Cereb Blood Flow Metab ; 38(1): 151-165, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28273725

RESUMEN

White matter (WM) disintegration is common in the older population and is associated with vascular cognitive impairment (VCI). This study explored the effects of environmental enrichment (EE) on pathological sequelae in a mouse model of chronic cerebral hypoperfusion induced by bilateral common carotid artery stenosis (BCAS). Male C57BL/6 J mice underwent BCAS or sham surgery. One-week after surgery, mice were exposed to three different degrees of EE; either standard housing conditions (std), limited 3 h exposure to EE per day (3 h) or full-time exposure to EE (full) for 12 weeks. At 13 weeks after surgery, cognitive testing was performed using a three-dimensional 9-arm radial maze. At 16 weeks after surgery, nesting ability was assessed in each mouse immediately before euthanasia. Brains retrieved after perfusion fixation were examined for WM pathology. BCAS caused WM changes, as demonstrated by corpus callosum atrophy and greater WM disintegrity. BCAS also caused impaired nesting ability and cognitive function. These pathological changes and working memory deficits were attenuated, more so by limited rather than full-time exposure to EE regime. Our results suggest that limited exposure to EE delays the onset of WM degeneration. Therefore, the implementation of even limited EE may be beneficial for patients diagnosed with VCI.


Asunto(s)
Demencia Vascular/patología , Ambiente , Vivienda para Animales , Sustancia Blanca/patología , Animales , Estenosis Carotídea/complicaciones , Circulación Cerebrovascular , Demencia Vascular/etiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
19.
J Neurochem ; 144(5): 617-633, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29210074

RESUMEN

Advances in neuroimaging have enabled greater understanding of the progression of cerebral degenerative processes associated with ageing-related dementias. Leukoaraiosis or rarefied white matter (WM) originally described on computed tomography is one of the most prominent changes which occurs in older age. White matter hyperintensities (WMH) evident on magnetic resonance imaging have become commonplace to describe WM changes in relation to cognitive dysfunction, types of stroke injury, cerebral small vessel disease and neurodegenerative disorders including Alzheimer's disease. Substrates of WM degeneration collectively include myelin loss, axonal abnormalities, arteriolosclerosis and parenchymal changes resulting from lacunar infarcts, microinfarcts, microbleeds and perivascular spacing. WM cells incorporating astrocytes, oligodendrocytes, pericytes and microglia are recognized as key cellular components of the gliovascular unit. They respond to ongoing pathological processes in different ways leading to disruption of the gliovascular unit. The most robust alterations involve oligodendrocyte loss and astrocytic clasmatodendrosis with displacement of the water channel protein, aquaporin 4. These modifications likely precede arteriolosclerosis and capillary degeneration and involve tissue oedema, breach of the blood-brain barrier and induction of a chronic hypoxic state in the deep WM. Several pathophysiological mechanisms are proposed to explain how WM changes commencing with haemodynamic changes within the vascular system impact on cognitive dysfunction. Animal models simulating cerebral hypoperfusion in man have paved the way for several translational opportunities. Various compounds with variable efficacies have been tested to reduce oxidative stress, inflammation and blood-brain barrier damage in the WM. Our review demonstrates that WM degeneration encompasses multiple substrates and therefore more than one pharmacological approach is necessary to preserve axonal function and prevent cognitive impairment. This article is part of the Special Issue "Vascular Dementia".


Asunto(s)
Envejecimiento , Encéfalo/patología , Demencia Vascular/patología , Demencia/patología , Leucoaraiosis/complicaciones , Sustancia Blanca/patología , Animales , Barrera Hematoencefálica/patología , Encéfalo/fisiopatología , Demencia/etiología , Demencia/fisiopatología , Demencia Vascular/etiología , Demencia Vascular/fisiopatología , Humanos , Leucoaraiosis/diagnóstico por imagen , Vaina de Mielina/patología , Neuroglía/patología , Neuronas/patología , Sustancia Blanca/fisiopatología
20.
Clin Sci (Lond) ; 131(19): 2451-2468, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28963120

RESUMEN

Increasing evidence suggests that vascular risk factors contribute to neurodegeneration, cognitive impairment and dementia. While there is considerable overlap between features of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD), it appears that cerebral hypoperfusion is the common underlying pathophysiological mechanism which is a major contributor to cognitive decline and degenerative processes leading to dementia. Sustained cerebral hypoperfusion is suggested to be the cause of white matter attenuation, a key feature common to both AD and dementia associated with cerebral small vessel disease (SVD). White matter changes increase the risk for stroke, dementia and disability. A major gap has been the lack of mechanistic insights into the evolution and progress of VCID. However, this gap is closing with the recent refinement of rodent models which replicate chronic cerebral hypoperfusion. In this review, we discuss the relevance and advantages of these models in elucidating the pathogenesis of VCID and explore the interplay between hypoperfusion and the deposition of amyloid ß (Aß) protein, as it relates to AD. We use examples of our recent investigations to illustrate the utility of the model in preclinical testing of candidate drugs and lifestyle factors. We propose that the use of such models is necessary for tackling the urgently needed translational gap from preclinical models to clinical treatments.


Asunto(s)
Conducta Animal , Circulación Cerebrovascular , Trastornos Cerebrovasculares/complicaciones , Trastornos del Conocimiento/etiología , Cognición , Demencia Vascular/etiología , Investigación Biomédica Traslacional/métodos , Péptidos beta-Amiloides , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Trastornos Cerebrovasculares/tratamiento farmacológico , Trastornos Cerebrovasculares/fisiopatología , Trastornos Cerebrovasculares/psicología , Enfermedad Crónica , Cognición/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/fisiopatología , Demencia Vascular/psicología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Leucoencefalopatías/etiología , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/psicología , Placa Amiloide , Factores de Riesgo , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...